Оптические волноводы

Пространственно-неоднородное распределение показателя преломления \(n(x,y) \)

Цилиндрическая симметрия

\[n = n(x,y) \]

\[
\vec{E}(x, y, z, t) = \vec{E}(x, y) \exp\left[i(\omega t - \beta z) \right]
\]

\[
\vec{H}(x, y, z, t) = \vec{H}(x, y) \exp\left[i(\omega t - \beta z) \right]
\]
Волновое уравнение и свойства поля

\[\Delta_\perp + \left[\frac{\omega^2}{c^2} n^2 (x, y) - \beta^2 \right] \tilde{E}(x, y) = 0 \quad \Delta_\perp = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \]

Локация поля (поле экспоненциально убывает): \[\Delta_\perp > 0 \]

\[\beta^2 > \frac{\omega^2}{c^2} n^2 \left(\sqrt{x^2 + y^2} \to \infty \right) \]

? область начала координат - ?: \[\beta^2 < \frac{\omega^2}{c^2} n^2 (x, y) \]

\[\frac{\omega^2}{c^2} n^2 (\infty) < \frac{\omega^2}{c^2} n^2 (x, y) \quad n^2 (\infty) < n^2 (x, y) \]
Полное внутреннее отражение

Физически эквивалентно полному внутреннему отражению

Планарный волновод

\[n^2(\infty) < n^2(x, y) \]
Планарный волновод

\[n(x) = \begin{cases}
 n_1, & x > 0, \\
 n_2, & -t < x \leq 0, \\
 n_3, & x \leq -t.
\end{cases} \]

Область 1:
\[\frac{\partial^2 E}{\partial x^2} + \left(k_0^2 n_1^2 - \beta^2 \right) E = 0 \]

Область 2:
\[\frac{\partial^2 E}{\partial x^2} + \left(k_0^2 n_2^2 - \beta^2 \right) E = 0 \]

Область 3:
\[\frac{\partial^2 E}{\partial x^2} + \left(k_0^2 n_3^2 - \beta^2 \right) E = 0 \]

\[\frac{\partial^2}{\partial y^2} = 0 \]

\[n_2 > n_3 > n_1 \]

\[k_0 = \frac{\omega}{c} \]
Каким должна быть постоянная β?

Случай 1

$|\beta| > |k_0 n_2|$

Всюду

$\frac{1}{E} \frac{\partial^2 E}{\partial x^2} > 0$

Всюду экспоненциальное решение

Физически нереализуемо
Каким должна быть постоянная β?

Случай 2

$k_0 n_3 < \beta < k_0 n_2$

Область 2:

$$\frac{1}{E} \frac{\partial^2 E}{\partial x^2} < 0$$

Осциллирующее решение

Области 1, 3: экспоненциальное решение
Каким должна быть постоянная β?

Случай 3

$k_0 n_1 < \beta < k_0 n_3$

Излучающая мода подложки

Экспоненциальное затухание

Осциллирующее решение
Каким должна быть постоянная β?

Случай 4

$0 < \beta < k_0 n_1$

Для передачи излучения на расстояния подходит только случай 2:

$k_0 n_3 < \beta < k_0 n_2$

Излучающая мода волновода
Полное внутреннее отражение и волноводное распространение

Полное внутреннее отражение

\[\frac{n_2}{n_1} \sin \theta_2 > 1 \]

\[\frac{n_2}{n_1} > 1 \quad \frac{n_2}{n_3} > 1 \]

Мода – устойчивое состояние поля, характеризующееся определенным распределением амплитуды и поляризации

ТЕ-мода:
плоскости падения
\[E_y, H_x, H_z \]

ТМ-мода:
лежит в плоскости падения
\[E_x, E_z, H_y \]
Решения для поля в планарном волноводе

\[n_2 > n_3 > n_1 \]

\[k_0 n_3 < \beta < k_0 n_2 \]

\[E_y^I = A e^{-qx}, \quad x > 0 \]

\[q^2 = \beta^2 - k_0^2 n_1^2 \]

\[E_y^{II} = B \sin hx + C \cos hx, \quad -t < x < 0 \]

\[E_y^{III} = D e^{p(x+t)}, \quad x < -t \]

\[p^2 = \beta^2 - k_0^2 n_3^2 \]

\[h^2 = k_0^2 n_2^2 - \beta^2 \]
Граничные условия

Граница между областями 1 и 2

\[E_y^I (0) = E_y^{II} (0) \quad \rightarrow \quad A = C \]

\[\frac{\partial E_y^I}{\partial x} \bigg|_{x=0} = \frac{\partial E_y^{II}}{\partial x} \bigg|_{x=0} \quad \rightarrow \quad -qA = hB \]

\[B = -\frac{qC}{h} \quad \rightarrow \quad -qC = hB \]

Решения в областях 1 и 2

\[E_y^I = Ae^{-qx} \]

\[E_y^{II} = A \left[\cos hx - \frac{q}{h} \sin hx \right] \]
Границные условия

Граница между областями 2 и 3

\[E_y^{II} (x = -t) = E_y^{III} (x = -t) \]

\[D = A \left[\cos ht + \frac{q}{h} \sin ht \right] \]

\[\frac{\partial E_y^{II}}{\partial x} \bigg|_{x=-t} = \frac{\partial E_y^{III}}{\partial x} \bigg|_{x=-t} \]

Решение в области 3

\[E_y^{III} = A \left[\cos ht + \frac{q}{h} \sin ht \right] e^{p(x+t)} \]
Дисперсионное соотношение

\[\frac{\partial E_y^{II}}{\partial x} = -Ah \sin hx - A \frac{q}{h} h \cos hx \]

\[\frac{\partial E_y^{II}}{\partial x} \bigg|_{x=-t} = Ah \sin ht - qA \cos ht \]

\[\frac{\partial E_y^{III}}{\partial x} = Ap \left[\cos ht + \frac{q}{h} \sin ht \right] e^{p(x+t)} \]

\[\frac{\partial E_y^{III}}{\partial x} \bigg|_{x=-t} = Ap \left[\cos ht + \frac{q}{h} \sin ht \right] \]

\[h \sin ht - q \cos ht = p \cos ht + \frac{qp}{h} \sin ht \]

\[\sin ht \left[h - \frac{qp}{h} \right] = (p + q) \cos ht \quad \Rightarrow \quad \tan ht = \frac{(p + q)}{\left[h - \frac{qp}{h} \right]} \]
Частота отсечки

\[\tan\left(h t - \pi N\right) = \frac{h(p + q)}{h^2 - pq} \quad n_2 < n_1, n_3 \]

\[\nu = \frac{kt}{2} \left(n_2^2 - n_3^2\right)^{1/2} \quad - \text{безразмерная частота} \]

Условие волноводного распространения нарушается при

\[\beta = k_c n_3 \quad k_c \quad - \text{параметр отсечки} \]

\[\tan\left[\left(k_c^2 n_2^2 - k_c^2 n_3^2\right)^{1/2} t - \pi N\right] = \frac{\left(k_c^2 n_2^2 - k_c^2 n_3^2\right)^{1/2} \left(k_c^2 n_3^2 - k_c^2 n_1^2\right)^{1/2}}{k_c^2 n_2^2 - k_c^2 n_3^2} \]

\[\tan\left[2\nu_c - \pi N\right] = \frac{\left(n_3^2 - n_1^2\right)^{1/2}}{\left(n_2^2 - n_3^2\right)^{1/2}} \quad \nu_c = \frac{\pi N}{2} + \frac{1}{2} \arctg\left[\frac{\left(n_3^2 - n_1^2\right)^{1/2}}{\left(n_2^2 - n_3^2\right)^{1/2}}\right] \]
Число волноводных мод

\[\nu_c = \frac{\pi N}{2} + \frac{1}{2} \arctg \left[\frac{(n_3^2 - n_1^2)^{1/2}}{(n_2^2 - n_3^2)^{1/2}} \right] \]

- нормированная частота отсечки

\[N = 0 \]

- нулевая мода

Полное число мод, поддерживаемых структурой

\[M = \left\{ \frac{1}{\pi} \left[2\nu - \arctg \left(\frac{(n_3^2 - n_1^2)^{1/2}}{(n_2^2 - n_3^2)^{1/2}} \right) \right] \right\}_{\text{int}} \]

округленное до ближайшего целого числа
Симметричный планарный волновод

Частота отсечки

\[\nu_c = \frac{\pi N}{2} \]

Число волноводных мод

\[M = \left(\frac{2\nu}{\pi} \right)_{\text{int}} \]

Дисперсионное соотношение

\[\tan \left(ht - \pi N \right) = \frac{2hq}{h^2 - q^2} \]
Приближение геометрической оптики

ПВО

\[n_2 > n_1, n_3 \]

Фазовое условие существования моды

\[2t \cos \theta_2 k_0 n_2 - \delta_{21} - \delta_{23} = 2\pi N \quad N = 0, 1, 2, \ldots \]

\[\delta_{21}, \delta_{23} \] - скачки фазы при отражении от границ
Приближение геометрической оптики

Формула Френеля

\[\delta_{21} = 2\arctg \left(\frac{n_1}{n_2} \right) \frac{\cos \theta_2}{\sin^2 \theta_2 - \left(\frac{n_1}{n_2} \right)^2} \]

Дисперсионное соотношение

\[2ht - 2\arctg \left(\frac{q}{h} \right) - 2\arctg \left(\frac{p}{h} \right) = 2\pi N \]
Полые волноводы

\[h_i^2 = n_i^2 k_0^2 - \beta^2 \]

\[k_0 = \frac{2\pi}{\lambda} \]

Волновое уравнение

\[\left\{ \nabla^2 + \left[\frac{\omega^2}{c^2} n^2(x, y) - \beta^2 \right] \right\} \vec{E} = 0 \]

Вид решения

\[\vec{E}(x, y, z, t) = \vec{E}(x, y) \exp\left[-i(\omega t - \beta z)\right] \]
Поле в полом волноводе

ТЕ-моды

\[E_y = \begin{cases}
A \exp(-ih_1x), & x \geq 0, \\
B \cos h_2t + C \sin h_2t, & -t \leq x \leq 0, \\
D \exp[ih_3(x + t)], & x \leq -t.
\end{cases} \]

Граничные условия

\[E_y^I \bigg|_{x=0} = E_y^{II} \bigg|_{x=0} \rightarrow A = B \]

\[\frac{\partial E_y^I}{\partial x} \bigg|_{x=0} = \frac{\partial E_y^{II}}{\partial x} \bigg|_{x=0} \rightarrow -ih_1 A = h_2 C \quad C = -i \frac{h_1}{h_2} A \]

\[E_y^{II} = A \left[\cos h_2x - i \frac{h_1}{h_2} \sin h_2x \right] \]
Дисперсионное соотношение

Граничные условия на границе 2 - 3

\[D = A \left[\cos h_2 t + i \frac{h_1}{h_2} \sin h_2 t \right] \]

\[E_{y}^{III} = A \left[\cos h_2 t + i \frac{h_1}{h_2} \sin h_2 t \right] \exp \left[i h_3 (x + t) \right] \]

Равенство производных на границе 2 – 3 дает

\[-A h_2 \sin h_2 (-t) - i A \frac{h_1}{h_2} h_2 \cos h_2 t = A \left[\cos h_2 t + i \frac{h_1}{h_2} \sin h_2 t \right] i h_3\]

Дисперсионное соотношение

\[\sin h_2 t \left[h_2 + \frac{h_1}{h_2} h_3 \right] = \cos h_2 t \left[i h_3 + i h_1 \right] \]
Дисперсия и постоянные распространения

Дисперсионное соотношение

\[\tan h_2 t = i h_2 \frac{h_1 + h_3}{h_2^2 + h_1 h_3} \]

Постоянные распространения - комплексные

\[\beta = \beta_0 - \frac{i}{2} \alpha \]

Случай сильно локализованных мод

\[h_2 \ll h_1, h_3 \]

Последовательные приближения

\[\tan h_2 t \approx i h_2 \left(\frac{1}{h_1} + \frac{1}{h_3} \right) \]

\[h_2 = h_2^{(1)} + h_2^{(2)} + \ldots \]

\[\tan h_2^{(1)} t = 0 \]

\[h_2^{(1)} t = \pi s \]

\[s = 1, 2, 3, \ldots \]
Постоянные распространения полых волноводов

В первом приближении

\[\beta = n_2 k_0 \]
\[h_1^2 = n_1^2 k_0^2 - n_2^2 k_0^2 \]
\[h_3^2 = n_3^2 k_0^2 - n_2^2 k_0^2 \]

Второе приближение

\[\text{tg} h_2^{(2)}t = i \frac{\pi s}{t} \left(\frac{1}{k_0 \left(n_1^2 - n_2^2 \right)^{1/2}} + \frac{1}{k_0 \left(n_3^2 - n_2^2 \right)^{1/2}} \right) \]

\[h_2 \approx \frac{\pi s}{t} + i \frac{\pi s}{k_0 t^2} \left(\frac{1}{\left(n_1^2 - n_2^2 \right)^{1/2}} + \frac{1}{\left(n_3^2 - n_2^2 \right)^{1/2}} \right) \]
Постоянные распространения

\[\beta = \left(n_2^2 k_0^2 - h_2^2 \right)^{1/2} \approx n_2 k_0 \left(1 - \frac{1}{2} \frac{h_2^2}{n_2^2 k_0^2} \right) \]

\[\beta = \left[(a + b)^2 \approx a^2 + 2ab, b \ll a \right] = \]

\[= n_2 k_0 \left[1 - \frac{1}{2} \left(\frac{\pi s}{t} \right)^2 \frac{1}{n_2^2 k_0^2} \right] - n_2 k_0 \frac{\pi s}{t} i \frac{\pi s}{k_0 t^2} \left[\frac{1}{(n_1^2 - n_2^2)^{1/2}} + \frac{1}{(n_3^2 - n_2^2)^{1/2}} \right] \frac{1}{n_2^2 k_0^2} \]

материальная дисперсия

дисперсия волноводных мод

\[\beta = \frac{1}{n_2 k_0} \left[1 - \frac{1}{2} \left(\frac{\pi s}{n_2 k_0 t} \right)^2 \right] - i \left(\frac{\pi s}{k_0} \right)^2 \frac{1}{n_2} \frac{1}{t^3} \left[\frac{1}{(n_1^2 - n_2^2)^{1/2}} + \frac{1}{(n_3^2 - n_2^2)^{1/2}} \right] \frac{1}{\alpha} \]

затухание \[\alpha \sim t^{-3} \]
Приближение геометрической оптики

Условие существования моды
скакок фазы = π

\[h_2 t = \pi s \]

\[h_2 t = k_0 n_2 \cos \theta_2 t = \pi s \]

Потери при отражении от стенок

Число пар отражений на длине \(L \)

\[N = \frac{L}{2t \tan \theta_2} \]
Потери в полом волноводе

\[(R_1R_2)^N = e^{-\alpha L}\]

\(R_{1,2}\) — коэффициенты отражения

\[N \ln R_1R_2 = -\alpha L\]

\[\frac{L}{2t \tan \theta_2} \ln R_1R_2 = -\alpha \frac{L}{2t} \rightarrow \alpha = -\frac{1}{2t \tan \theta_2} \ln R_1R_2\]

\[\alpha = -\frac{h_2}{2\beta t} \ln \left(R_{21}R_{23} \right)\]

Формулы Френеля

\[R_{21} = 1 - 4 \frac{n_2 \cos \theta_2}{n_1 \cos \theta_1}\]

\[R_{23} = 1 - 4 \frac{n_2 \cos \theta_2}{n_3 \cos \theta_3}\]
Потери в полом волноводе

\[h_2 = \frac{\pi s}{t} \quad \beta = k_0 n_2 \]

\[n_1 \sin \theta_1 = n_2 \sin \theta_2 \]

\[\cos \theta_1 = \left(1 - \left(\frac{n_2}{n_1} \right)^2 \sin^2 \theta_2 \right)^{1/2} \]

\[\cos \theta_3 = \left(1 - \left(\frac{n_2}{n_3} \right)^2 \sin^2 \theta_2 \right)^{1/2} \]

В режиме сильной локализации

\[\theta_2 \rightarrow \frac{\pi}{2} \left(\approx \frac{\pi}{2} \right) \rightarrow \cos \theta_1 \approx \left(1 - \left(\frac{n_2}{n_1} \right)^2 \right)^{1/2} \]

\[\cos \theta_3 \approx \left(1 - \left(\frac{n_2}{n_3} \right)^2 \right)^{1/2} \]
Потери в полом волноводе

$$\ln(1 + x) \approx x$$

$$n_2 \cos \theta_2 = \frac{\pi s}{k_0 t}$$

$$\alpha = -\frac{1}{2} \frac{\pi s}{t} \frac{1}{k_0 n_2} \frac{1}{t} \left[-4 \frac{n_2 \cos \theta_2}{\left(n_1^2 - n_2^2\right)^{1/2}} - 4 \frac{n_2 \cos \theta_2}{\left(n_3^2 - n_2^2\right)^{1/2}} \right]$$

$$\alpha = 2 \left(\frac{\pi s}{k_0}\right)^2 \frac{1}{n_2} \frac{1}{t^3} \left[\frac{1}{\left(n_1^2 - n_2^2\right)^{1/2}} + \frac{1}{\left(n_3^2 - n_2^2\right)^{1/2}} \right]$$

Симметричный волновод:
$$n_1 = n_3 = n; \ n_2 = 1$$

$$\alpha = \frac{4}{t^3} \left(\frac{\pi s}{k_0}\right)^2 \frac{1}{\left(n^2 - 1\right)^{1/2}}$$
Приложения полых волноводов

Газовые лазеры

Канаилирование холодных атомов

Генерация коротких импульсов
 ФСМ, ВКР

Генерация оптических гармоник
Генерация сверхкоротких импульсов в полых волноводах

М. Nisoli et al., 1996